Topic 4.11 Effects of endocrine active substances in wildlife species: Genetic, biochemical, and physiological factors in variable susceptibility to endocrine disruptors*

نویسندگان

  • Shin’ichiro Kawai
  • Makito Kobayashi
  • Hideo Kaneko
چکیده

Responses to endocrine active substances (EASs) in animals are various, and differences between the responses among individuals, populations, and species are well known. These differences are observed not only in EASs but in most environmental chemicals including synthetic and naturally occurring ones. The basic differences in sensitivity to EASs are attributed to that of affinity or specificity of the receptors to EASs at the cellular level. Although the nucleotide sequences encoding for estrogen receptor proteins have been documented in several species and the functions of the receptors are the same, the ability to bind the natural hormones and the estrogenic xenobiotics is not necessarily identical. The reproductive endocrine system is basically common among vertebrates, but chemical types of hormones, physiological roles of hormones, and the basal blood levels of hormones differ among each species, especially in sex steroids. These differences cause various types of responses and sensitivity to EASs among animal species. Xenobiotic metabolism is important for the genetical, biochemical, and physiological factors concerning the influence of EASs. Some EASs directly inhibit cytochrome P450 (CYP) activity as was reported in tributyltin that inhibits CYP19 (aromatase) activity causing imposex in neogastropods. Some organochlorines including dioxins stimulate arylhydrocarbon (Ah) receptor-mediated xenobiotic metabolism, and result in the metabolic disruption of steroid hormones such as estrogen as were reported in eggshell thinning in birds of prey and uterus occlusion in seals. CYP activity greatly differs among wildlife species in both terrestrial and aquatic organisms, and these differences are significantly responsible for the multiple effects or toxicity of EASs. Sex and age differences also cause different responses to EASs and are largely due to the differences in xenobiotic metabolizing activities. *Report from a SCOPE/IUPAC project: Implication of Endocrine Active Substances for Human and Wildlife (J. Miyamoto and J. Burger, editors). Other reports are published in this issue, Pure Appl. Chem. 75, 1617–2615 (2003). ‡Corresponding author

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deleterious effects of estrogenic endocrine disruptors on marine organisms: Histological Observed Effects and Some Novel Useful Monitoring Bioassays

Aquatic environments receive significant levels of chemical contaminants generated by human activities. Among these pollutants, we noticed the xenobiotics known as reproductive toxicants and endocrine disruptors. The endocrine disruption in wildlife has been the subject of many reviews and workshops in recent years. Field observations of reproductively abnormal organisms and population declines...

متن کامل

Viewpoint: Policy Requirements for Protecting Wildlife from Endocrine Disruptors

Man-made endocrine-disrupting chemicals (EDCs) present a threat to biodiversity, even in remote areas. To date, numerous wildlife species have been affected by EDCs in the environment, but it is likely that many more species are suffering effects that have not yet been reported. Impaired reproduction, damaged brain function, and deficits of the immune system are of particular concern. In order ...

متن کامل

Environmental endocrine disruptors: does a sex-related susceptibility exist?

Several substances present in the environment, now classified as endocrine disruptors (EDs), strongly interfere with both androgen and oestrogen actions in reproductive tissues. However, nowadays it is well recognized that these sex steroid hormones are more than regulators of gonadal functions. In fact, they, in synergy with genes, are responsible of sex-related differences in anatomical, phys...

متن کامل

Human infertility: are endocrine disruptors to blame?

Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthet...

متن کامل

Endocrine Disruptors: a Real Concern for Humans?

The role of Endocrine Disruptors as real risk for ecosystems, wildlife and humans represents a concern and the debate on this issue is open owing the conflicting interests between the producers of these products and the scientific community. A concise overview of the nature, presence and adverse effects induced in wildlife and humans by Endocrine Disruptors is illustrated. Some indications to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003